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Abstract

This paper presents analysis and design results for distributed consensus algorithms in multi-
agent networks. We consider arbitrary consensus functions of the initial state of the network
agents. Under mild smoothness assumptions, we obtain necessary and sufficient conditions char-
acterizing any algorithm that asymptotically achieves consensus. This characterization is the
building block to obtain various design results. We first identify a class of smooth functions
for which one can synthesize in a systematic way distributed algorithms that achieve consensus.
We apply this result to the family of weighted power mean functions, and characterize the ex-
ponential convergence properties of the resulting algorithms. We conclude with two distributed
algorithms that achieve, respectively, max and min consensus in finite time.

1 Introduction

Arguably, the ability to reach consensus, or agreement, upon some (a priori unknown) quantity
is critical for any multi-agent system. Network coordination problems involving self-organization,
formation pattern, distributed estimation or parallel processing, to name a few, require individual
agents to agree on the identity of a leader, jointly synchronize their operation, decide which specific
pattern to form, balance the computational load or fuse consistently the information gathered on
some spatial process.

In this paper, we address the problem of designing (continuous-time) coordination algorithms
that make a networked system asymptotically agree upon the value of a desired arbitrary function of
the initial state of the individual agents. The motivation behind our approach is to make available
broadly applicable tools and systematic design methodologies for coordination problems involving
groups of robotic agents and mobile sensor networks.

Literature review

Distributed consensus algorithms have a long-standing tradition in computer science, e.g. [1]. Within
the literature on cooperative control and multi-agent systems, recent years have witnessed the intro-
duction of distributed strategies that achieve various forms of agreement. This interest is reflected
in the recent surveys [2, 3]. The work [4] examines linear time-varying consensus algorithms with
uniform exponential convergence properties where the final agreement value is not known. A grow-
ing body of work focuses in designing and analyzing algorithms that make individual network
agents agree upon the value of some function of their initial states. These include average consen-
sus [5, 6, 7], average-max-min consensus [8], geometric-mean consensus [9] and power-mean consen-
sus [10]. In these works, the state variables associated to the individual agents do not necessarily
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correspond to physical variables, such as spatial coordinates or velocities. Network coordination
problems that focus, instead, on “spatial versions” of consensus include rendezvous [11, 12, 13, 14],
flocking [15, 16, 17, 18], cohesiveness [19, 20] and synchronization [21]. Applications of consensus
algorithms to data fusion problems and distributed filtering include [22, 23, 24].

Statement of contributions

The contributions of this paper pertain both analysis and design of cooperative strategies for con-
sensus. Regarding analysis, we identify a set of conditions that completely characterize when a
coordination algorithm makes the network agents asymptotically agree upon the value of an arbi-
trary function of their individual states (cf. Theorem 4.3 and Corollary 4.4). This characterization
holds under mild assumptions on the smoothness properties of both the consensus function and the
coordination algorithm. We then particularize this result to the setting of real analytic consensus
functions (cf. Proposition 4.6).

Regarding design, we identify a class of smooth consensus functions for which one can synthesize
in a systematic way distributed coordination algorithms (cf. Proposition 5.1 and Corollary 5.2). The
property common to these functions is that the computation of their gradients enjoys some special
distributed features. Building on this result, we characterize the exponential rate of convergence of
a class of distributed algorithms that achieve weighted power mean consensus originally introduced
in [10] (cf. Proposition 5.4). The maximum and the minimum functions do not belong to the special
class of functions mentioned above. The last contribution of the paper is the introduction of two
distributed algorithms that achieve max and min consensus in finite time (cf. Proposition 5.5). The
convergence proof relies on the characterization obtained in Corollary 4.4 and tools from nonsmooth
stability analysis.

Organization

The paper is organized as follows. Section 2 presents some preliminary notions on undirected graphs,
distributed maps and nonsmooth stability analysis. Section 3 formally introduces the consensus
problem we are interested in solving. Section 4 identifies necessary and sufficient conditions for any
coordination algorithm that asymptotically achieves consensus. Section 5 investigates the design
of distributed coordination algorithms for consensus, paying special attention to weighted power
mean, max and min consensus. Finally, we present our conclusions and ideas for future research in
Section 6.

Notation

Let N, R+ and R+ denote, respectively, the set of natural numbers, the set of positive reals, and
the set of non-negative reals. Let iR : R → diag(Rn) ⊂ R

n denote the natural inclusion, and
1 denote the vector 1 = (1, . . . , 1) ∈ R

n. Given χ : V ⊂ R
d1 → R

d2 , d1, d2 ∈ N, we denote
Im(χ) = {χ(P ) ∈ R

d2 | P ∈ V}. Note that Im(iR) = diag(Rn). For a continuous function χ, its
extension χe : V ⊂ R

d1 → R
d2 is defined as χe(P ) = χ(P ) for P ∈ V, and χe(P ) = limm→+∞ χ(Pm)

for P ∈ ∂V and V ∋ Pm → P . Given a positive semidefinite matrix A, let ker(A) ⊂ R
n denote the

eigenspace corresponding to the eigenvalue 0 (if A is positive definite, then we set ker(A) = {0}).
Denote by πker(A) : R

n → ker(A) the orthogonal projection onto ker(A). Let λ2(A) and λn(A)
be the smallest non-zero and greatest eigenvalue of A, respectively, i.e. λ2(A) = min{λ | λ >
0 and λ eigenvalue of A} and λn(A) = max{λ | λ eigenvalue of A}. One can see that for u ∈ R

n,

λ2(A) ‖u − πker(A)(u)‖2
2 ≤ uT A u ≤ λn(A) ‖u − πker(A)(u)‖2

2. (1)
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For a set X, we denote by P(X) the collection of all subsets of X, and by F(X) ⊂ P(X) the
collection of all finite subsets of X. Finally, let sgn+, sgn−, sgn : R → R be

sgn+(x) =

{
0, x ≤ 0,

1, x > 0,
sgn−(x) =

{
0, x ≥ 0,

−1, x < 0,

and sgn(x) = sgn+(x) + sgn−(x).

2 Preliminaries

In this section, we gather some definitions and tools from algebraic graph theory, distributed maps
and nonsmooth stability analysis.

2.1 Graph Laplacians, disagreement functions and distributed maps

The graph Laplacian matrix L associated with an undirected graph G = ({1, . . . , n}, E) (see, for
instance, [25]) is defined as L = ∆−A, where ∆ is the degree matrix and A is the adjacency matrix
of the graph. The Laplacian matrix has the following relevant properties: it is symmetric, positive
semidefinite and has λ = 0 as an eigenvalue with eigenvector 1. More importantly, the graph G is
connected if and only if rank(L) = n − 1, i.e., if the eigenvalue 0 has multiplicity one. This is the
reason why the eigenvalue λ2(L) = min{λ | λ > 0 and λ eigenvalue of L} is termed the algebraic
connectivity of the graph G.

Let us associate a state pi ∈ R to each vertex i ∈ {1, . . . , n}. Two nodes are said to agree if and
only if pi = pj . A meaningful function that quantifies the group disagreement in a network is the
so-called disagreement function or Laplacian potential ΦG : R

n → R+ associated with G (see [5]),
defined by

ΦG(p1, . . . , pn) =
1

2
P T LP =

1

2

∑

i<j
(i,j)∈E

(pj − pi)
2,

with P = (p1, . . . , pn) ∈ R
n. Clearly ΦG(p1, . . . , pn) = 0 if and only if all neighboring nodes in the

graph G agree. If the graph G is connected, then all nodes in the graph agree and a consensus is
reached. The Laplacian potential is smooth, and its gradient is given by

∂ΦG

∂pi
=

∑

j∈NG(i)

(pi − pj), i ∈ {1, . . . , n}. (2)

Next, we introduce the notion of distributed map over an undirected graph G. Given two spaces
X, Y , and a function T : Xn → Y n, we say that T is (1-hop) distributed over G if there exist
functions T̃1, . . . , T̃n : X × F(X) → Y with

Ti(x1, . . . , xn) = T̃i(xi, {xj | j ∈ NG(i)}),

for all (x1, . . . , xn) ∈ X and all i ∈ {1, . . . , n}. Roughly speaking, the ith component of a distributed
map over G can be computed only with information about the state of node i and its neighbors in
the graph G. For example, from (2), we deduce that grad(ΦG) : R

n → R
n is distributed over G.

This notion was introduced in [14] for the more general class of proximity graphs.

2.2 Nonsmooth stability analysis

This section introduces differential equations with discontinuous right-hand sides and presents var-
ious nonsmooth tools to analyze their stability properties. The presentation follows the exposition
in [26, 27].
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For differential equations with discontinuous right-hand sides we understand the solutions in
terms of differential inclusions following [28]. Let F : R

d → 2R
d

, d ∈ N, be a set-valued map.
Consider the differential inclusion

ẋ ∈ F (x) . (3)

A solution to this equation on an interval [t0, t1] ⊂ R is defined as an absolutely continuous function
x : [t0, t1] → R

d such that ẋ(t) ∈ F (x(t)) for almost all t ∈ [t0, t1]. Now, consider the differential
equation

ẋ(t) = X(x(t)) , (4)

where X : R
d → R

d is measurable and essentially locally bounded [28]. For each x ∈ R
d, consider

the set

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(B(x, δ) \ S)} , (5)

where µ denotes the Lebesgue measure in R
d, and B(x, δ) is the ball of center x and radius δ in

R
d. A Filippov solution of (4) on an interval [t0, t1] ⊂ R is defined as a solution of the differential

inclusion

ẋ ∈ K[X](x) . (6)

A set M is weakly invariant (respectively strongly invariant) for (4) if for each x0 ∈ M , M contains
a maximal solution (respectively all maximal solutions) of (4).

Let f : R
d → R be a locally Lipschitz function. From Rademacher’s Theorem [29], we know

that locally Lipschitz functions are differentiable a.e. Let Ωf ⊂ R
d denote the set of points where

f fails to be differentiable. The generalized gradient of f at x ∈ R
d (cf. [29]) is defined by

∂f(x) = co
{

lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf

}
,

where S can be any set of zero measure. Note that if f is continuously differentiable, then ∂f(x) =
{df(x)}.

Given a locally Lipschitz function f , the set-valued Lie derivative of f with respect to X at x
(cf. [26, 27]) is

L̃Xf(x) = {a ∈ R | ∃v ∈ K[X](x) such that ζ · v = a , ∀ζ ∈ ∂f(x)}.

If f is continuously differentiable at x and X is continuous at x, then L̃Xf(x) corresponds to the
singleton {LXf(x)}, the usual Lie derivative of f in the direction of X at x. The next result states
that the set-valued Lie derivative allows us to study the evolution of a function along the Filippov
solutions.

Theorem 2.1. Let x : [t0, t1] → R
d be a Filippov solution of (4). Let f be a locally Lipschitz

and regular function. Then t 7→ f(x(t)) is absolutely continuous, d
dt

(
f(x(t))

)
exists a.e. and

d
dt

(f(x(t))) ∈ L̃Xf(x(t)) a.e.

The following result is a generalization of LaSalle principle for differential equations of the
form (4) with nonsmooth Lyapunov functions.

Theorem 2.2. (LaSalle Invariance Principle): Let f : R
d → R be a locally Lipschitz and regular

function. Let x0 ∈ S ⊂ R
d, with S compact and strongly invariant for (4). Assume that either

max L̃Xf(x) ≤ 0 or L̃Xf(x) = ∅ for all x ∈ S. Let ZX,f = {x ∈ R
d | 0 ∈ L̃Xf(x)}. Then, any

solution x : [t0, +∞) → R
d of (4) starting from x0 converges to the largest weakly invariant set M

contained in ZX,f ∩ S. Moreover, if the set M is a finite collection of points, then the limit of all
solutions starting at x0 exists and equals one of them.
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The following result establishes one condition under which convergence is attained in finite time.

Proposition 2.3. Under the same assumptions of Theorem 2.2, further assume that there exists a
neighborhood U of ZX,f ∩ S in S such that max L̃Xf < −ǫ < 0 a.e. on U \ (ZX,f ∩ S). Then, any
solution x : [t0, +∞) → R

d of (4) starting at x0 ∈ S reaches ZX,f ∩ S in finite time.

3 Problem statement

Let χ : V ⊂ R
n → R be a continuous function. Consider a network of agents whose individual

dynamics is given by

ṗi = ui, i ∈ {1, . . . , n}. (7)

We say that a coordination algorithm u : V ⊂ R
n → R

n asymptotically achieves χ-consensus if u
is essentially locally bounded, and for any (p1(0), . . . , pn(0)) ∈ V, any solution of the dynamics (7)
starting at (p1(0), . . . , pn(0)) stays in V and verifies, for all i ∈ {1, . . . , n},

pi(t) −→ χ(p1(0), . . . , pn(0)), t → +∞.

Because the trajectories stay in V, for consistency, Im(iR ◦ χ) ⊂ V must hold. Note that we do
not require u to be continuous. If u is discontinuous, then solutions are understood in the Filippov
sense [28]. We usually refer to χ as the consensus function.

Now, assume the network interconnection topology is described by an undirected graph G =
({1, . . . , n}, E). Our objective is to design coordination algorithms that verify, at the same time,

(P.1): u is distributed over G, and

(P.2): u asymptotically achieves χ-consensus.

Property (P.1) guarantees that the control law u is implementable over the network (7), and property
(P.2) guarantees that individual agents asymptotically agree on the value of χ.

4 Necessary and sufficient conditions for χ-consensus

In this section, we obtain necessary and sufficient conditions for any coordination algorithm that
asymptotically achieve consensus (i.e., satisfy property (P.2) in Section 3). We undertake this study
as a necessary step previous to the synthesis of coordination algorithms with properties (P.1) and
(P.2). The treatment of Section 5 builds on this discussion to design distributed algorithms for
χ-consensus.

We start by showing that the function χ must be constant along the trajectories of a coordination
algorithm that asymptotically achieves χ-consensus. The statement here is a generalization to
continuous functions of a result in [10].

Lemma 4.1. Let χ : V ⊂ R
n → R be a continuous function. Assume Im(iR ◦ χ) ⊂ V and let

u : V ⊂ R
n → R

n be a coordination algorithm asymptotically achieving χ-consensus. Then χ is
constant along the trajectories of (7).

Proof. Let P0 ∈ V and consider a trajectory R+ ∋ t 7→ P (t) of (7) that starts at P0. Since u
asymptotically achieves χ-consensus, then P (t) → (χ(P0), . . . , χ(P0)). Let t∗ ∈ R+. The curve
R+ ∋ t 7→ P (t + t∗) starts at P (t∗) ∈ V and it is a trajectory of (7). Since u asymptotically
achieves χ-consensus, then P (t + t∗) → (χ(P (t∗)), . . . , χ(P (t∗))). Since P (t) → (χ(P0), . . . , χ(P0)),
we conclude χ(P (t∗)) = χ(P0), i.e., χ is constant along R+ ∋ t 7→ P (t).

The following result restricts the class of functions χ for which the consensus problem can be
solved. The statement here is a generalization to functions with arbitrary domains of a result in [10].
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Proposition 4.2. Let χ : V ⊂ R
n → R be a continuous function. Assume Im(iR ◦ χ) ⊂ V and

let u : V ⊂ R
n → R

n be a coordination algorithm asymptotically achieving χ-consensus. Then
χ ◦ iR|Im(χ) = IdR|Im(χ).

Proof. We reason by contradiction. Assume there exists p ∈ Im(χ) such that χ(p, . . . , p) 6= p (note
that (p, . . . , p) ∈ V because Im(iR ◦ χ) ⊂ V). Let ǫ = |χ(p, . . . , p) − p| > 0. By continuity of χ,
there exists δ > 0 such that ‖P − (p, . . . , p)‖ < δ implies |χ(P ) − χ(p, . . . , p)| < ǫ. On the other
hand, since p ∈ Im(χ), there exists P ∗ ∈ V \ {(p, . . . , p)} such that χ(P ∗) = p. By hypothesis, u
asymptotically achieves χ-consensus. In particular, this implies that the trajectory R+ ∋ t 7→ P (t)
of (7) starting from P (0) = P ∗ asymptotically converges to (χ(P ∗), . . . , χ(P ∗)) = (p, . . . , p). For
δ > 0 above, there exists T > 0 such that ‖P (t) − (p, . . . , p)‖ < δ for t ≥ T , which implies that
|χ(P (t)) − χ(p, . . . , p)| < ǫ. By Lemma 4.1, χ(P (t)) = χ(P ∗) = p, and hence |p − χ(p, . . . , p)| < ǫ,
contradicting ǫ = |χ(p, . . . , p) − p|.

The following result fully characterizes the situations where χ-consensus can be asymptotically
achieved by a coordination algorithm.

Theorem 4.3. Let χ : V ⊂ R
n → R be continuous. Assume that i−1

R
(V) = Im(χ) and Im(χe| diag(Rn)∩∂V )∩

Im(χ) = ∅. Let u : V ⊂ R
n → R

n be essentially locally bounded such that the trajectories of (7) are
bounded and V is strongly invariant. Then, u guarantees that χ-consensus is asymptotically reached
if and only if the following holds

(i) the trajectories of (7) converge to diag(Rn),

(ii) χ is constant along the trajectories of (7), and

(iii) χ ◦ iR|Im(χ) = IdR|Im(χ).

Proof. If u guarantees that χ-consensus is asymptotically reached, then (i) holds by definition, (ii)
holds by Lemma 4.1 and (iii) holds by Proposition 4.2. Now, assume that (i)-(iii) hold, and let us
prove that u guarantees that χ-consensus is asymptotically reached. Let P0 ∈ V and consider a
trajectory R+ ∋ t 7→ P (t) of (7) starting at P (0) = P0. Since the trajectory is bounded, its ω-limit
set, denoted Ω({P (t)}t∈R+

) ⊂ R
n, is non-empty, compact and invariant. By (i), Ω({P (t)}t∈R+

) ⊂
diag(Rn). For each (p, . . . , p) ∈ Ω({P (t)}t∈R+

), there exists a convergent subsequence (that, for

ease of notation, we also denote by {P (t)}t∈R+
) such that P (t) → (p, . . . , p). Note that (p, . . . , p) ∈

V. Extending χ by continuity if necessary, we have χ(p, . . . , p) = limt→+∞ χ(P (t)). Now (ii)
implies that actually χ(p, . . . , p) = χ(P0). This, together with Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅,
implies that p ∈ i−1

R
(V) = Im(χ). By (iii), we deduce p = χ(p, . . . , p) = χ(P0). Therefore, we

have established that Ω({P (t)}t∈R+
) = {χ(P0)1}, or, equivalently, that the trajectory {P (t)}t∈R+

converges to χ(P0)1, as claimed.

The previous result takes a much simpler form when the function χ is defined over the whole
space R

n and is surjective.

Corollary 4.4. Let χ : R
n → R be continuous and surjective. Let u : R

n → R
n be essentially

locally bounded such that the trajectories of (7) are bounded. Then, u guarantees that χ-consensus
is asymptotically reached if and only if the following holds

(i) the trajectories of (7) converge to diag(Rn),

(ii) χ is constant along the trajectories of (7), and

(iii) χ ◦ iR = IdR.
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Theorem 4.3 and Corollary 4.4 are important both from an analysis and a design viewpoint.
From an analysis perspective, these results characterize under what circumstances the network
asymptotically achieves χ-consensus with a coordination algorithm of the form u : V ⊂ R

n → R
n.

From a design perspective, these results establish a systematic methodology to synthesize solutions
to the χ-consensus problem. Therefore, if faced with the task of analyzing the correctness properties
of a given coordination algorithm, or the task of designing a new coordination algorithm to achieve
χ-consensus, one can just check that the consensus function satisfies condition (iii) in Theorem 4.3,
and that the coordination algorithm satisfies conditions (i) and (ii) in Theorem 4.3.

4.1 Real analytic consensus functions

In this section, we focus on our attention on real analytic functions χ : R
n → R. First, we show

that condition (iii) in Theorem 4.3 determines, up to first-order, the consensus function χ.

Lemma 4.5. Let χ : R
n → R be real analytic. Assume χ ◦ iR = IdR. Then, there exists w =

(w1, . . . , wn) ∈ R
n with

∑n
i=1 wi = 1 such that the first-order approximation of χ is the weighted

average mean function
∑

i=1n wi pi. We refer to w as the first-order weight vector associated to χ.

Proof. Let (p∗, . . . , p∗) ∈ diag(Rn). By definition, there exists a neighborhood U of (p∗, . . . , p∗) such
that

χ(p1, . . . , pn) =
∑

k1,...,kn≥0

ak1,...,kn
(p1 − p∗)k1 . . . (pn − p∗)kn ,

for all (p1, . . . , pn) ∈ U , where

ak1,...,kn
=

1

k1! . . . kn!

∂k1+···+knχ

∂pk1

1 . . . ∂pkn
n

(p∗, . . . , p∗).

In particular, note that a0,...,0 = χ(p∗, . . . , p∗) = p∗. Now, for any p ∈ iR
−1(U), we have

p = χ(p, . . . , p) =
∑

k1,...,kn≥0

ak1,...,kn
(p − p∗)k1 . . . (p − p∗)kn

= p∗ +
∑

k1,...,kn≥0
k1+···+kn≥1

ak1,...,kn
(p − p∗)k1+···+kn .

Since real analytic functions of one variable that are equal on an open set must be necessarily
identical on the intersection of their domains of definition, see e.g. [30, Corollary 1.2.6], we deduce

∑

k1,...,kn≥0
k1+···+kn=ℓ

ak1,...,kn
=

{
1, ℓ = 1,

0, ℓ ≥ 2.

Denoting for simplicity w1 = a1,0,...,0, . . . , wn = a0,0,...,1, we get the following expression for χ on U ,

χ(p1, . . . , pn) =

n∑

i=1

wi pi +
∑

k1,...,kn≥0
k1+···+kn≥2

ak1,...,kn
(p1 − p∗)k1 . . . (pn − p∗)kn .

To conclude, let us establish that the weights w1, . . . , wn are independent of the selected point in
diag(Rn) where the series expansion of χ is derived. We reason by contradiction. Assume there
exist P ∗

1 , P ∗
2 ∈ diag(Rn), with corresponding neighborhoods U1 and U2, and different weights in the

series expansion. Consider the compact segment with extreme points P ∗
1 and P ∗

2 . For each point
in this segment, there exists a neighborhood where χ admits a convergent series expansion. Since
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the segment is compact, there exist a finite number of pairwise-intersecting neighborhoods whose
union contains the segment. Without loss of generality, we can assume that U1 and U2 belong to
this finite family. Using again [30, Corollary 1.2.6], it is not difficult to see that any two points
whose corresponding neighborhoods intersect must have the same weights in the series expansion.
Therefore, the weights obtained throughout the segment are constant, which contradicts the fact
that P ∗

1 and P ∗
2 have different weights in their series expansion.

Next, given a connected undirected graph G, we show that under some additional conditions,
there always exist a (generally non distributed) coordination algorithm that asymptotically achieve
consensus. In the forthcoming statement, we denote by v/w ∈ R

n with v, w ∈ R
n, the vector whose

ith component is vi/wi, i ∈ {1, . . . , n}.

Proposition 4.6. Let χ : R
n → R be real analytic. Assume χ ◦ iR = IdR. Let w ∈ R

n
+ be the

first-order weight vector associated to χ, and assume (gradχ(P )−w) ·1 = 0, for all P ∈ R
n. Let G

be a connected undirected graph. Then, the coordination algorithm u : R
n → R

n with ith component,
i ∈ {1, . . . , n}, given by

ui(P ) =
1

wi

∑

j∈NG(i)

(pj − pi) +
( 1

w
gradχ(P )

)T
LP, (8)

asymptotically achieves χ-consensus.

Proof. Our proof strategy is to check the conditions of Corollary 4.4. Clearly, χ is continuous and
surjective. The map u is differentiable. Condition (iii) is readily verified by hypothesis. Condition
(ii) is a consequence of following simple computation

Luχ =
n∑

i=1

∂χ

∂pi
ui =

n∑

i=1

wiui +
n∑

i=1

( ∂χ

∂pi
− wi

)
ui

=
( 1

w
gradχ(P )

)T
LP −

n∑

i=1

( ∂χ

∂pi
− wi

) 1

wi
(LP )i = 0.

Finally, condition (i) follows from

LuΦG =
n∑

i=1

∂ΦG

∂pi
ui = −

n∑

i=1

1

wi

( ∑

j∈NG(i)

(pj − pi)
)2
≤ 0.

Using the connectedness of G, it is not difficult to establish that LuΦG(P ) = 0 if and only if
P ∈ diag(Rn). Therefore, the trajectories of (8) converge to diag(Rn). Using this property and the
fact that χ is analytic, one can also deduce that the trajectories are bounded.

Remark 4.7. Note that the coordination algorithm (8) is, in general, not distributed over the graph

G, since each agent needs to compute the term
(

1
w

gradχ(P )
)T

LP . In the next section, we focus
our attention on a special class of functions that admit distributed coordination algorithms. •

5 Distributed coordination algorithms for χ-consensus

In this section, we identify particular conditions on the consensus function χ under which distributed
coordination algorithms that asymptotically achieve consensus can be designed.

Proposition 5.1. Let χ : V ⊂ R
n → R be continuously differentiable such that χ ◦ iR|Im(χ) =

IdR|Im(χ), i−1
R

(V) = Im(χ) and Im(χe| diag(Rn)∩∂V ) ∩ Im(χ) = ∅. Let G be a connected undirected
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graph, and let gradχ be distributed over G, with all partial derivatives { ∂χ
∂p1

, . . . , ∂χ
∂pn

} having the
same constant sign on V. Assume that the coordination algorithm u : V ⊂ R

n → R
n,

ui =
1∣∣ ∂χ

∂pi

∣∣
∑

j∈NG(i)

(pj − pi), i ∈ {1, . . . , n} (9)

is essentially locally bounded and such that V is strongly invariant. Then, u is distributed over G
and asymptotically achieves χ-consensus.

Proof. Clearly, the map u : V ⊂ R
n → R

n is distributed over G. We prove that u asymptotically
achieves χ-consensus by using Theorem 4.3. Let us first establish that each trajectory of (9)
belongs to some bounded and invariant set. Consider the max : R

n → R function, max(P ) =

maxi∈{1,...,n}{pi}, and let us compute the set-valued Lie derivative L̃u max. If a ∈ L̃u max, then
a = u(P ) · ζ, for all ζ ∈ ∂ max. The generalized gradient of max is

∂ max (P ) = co{ei | i ∈ {1, . . . , n} with pi = max(P )}.

If P ∈ diag(Rn), then u(P ) = 0, and therefore a = 0. If P 6∈ diag(Rn), then using the fact that G is
connected, there exists k ∈ {1, . . . , n} with pk = maxj∈{1,...,n}{pj} such that

∑
j∈NG,k

(pj − pk) < 0.

Consequently, uk(P ) < 0, and a = u(P ) · ek < 0. Therefore, we conclude that either L̃u max = ∅ or

max L̃u max ≤ 0. Theorem 2.1 implies that pi(t) ≤ max{p1(0), . . . , pn(0)}. A similar argument with
the min function shows that min{p1(0), . . . , pn(0)} ≤ pi(t). Hence, any trajectory of (9) belongs to
a bounded and invariant set.

Let us study the evolution of the disagreement function ΦG along the trajectories of the system

LuΦG =
n∑

i=1

∂ΦG

∂pi
ui = −

n∑

i=1

1∣∣ ∂χ
∂pi

∣∣
( ∑

j∈NG(i)

(pj − pi)
)2
≤ 0.

Using the connectedness of G, it is not difficult to establish that Zu,ΦG
= diag(Rn). Given that

any trajectory of (9) belongs to some bounded and invariant set, the LaSalle Invariance Principle
guarantees that all trajectories converge to diag(Rn), i.e., condition (i) is satisfied. Condition (ii)
is easily verified since

Luχ =
n∑

i=1

∂χ

∂pi
ui =

n∑

i=1

sgn
( ∂χ

∂pi

)
·

∑

j∈NG(i)

(pj − pi)

= ±
n∑

i=1

∑

j∈NG(i)

(pj − pi) = 0.

Condition (iii) is verified by hypothesis, and this concludes the result.

The next result extends the applicability of Proposition 5.1 to functions χ whose gradient is not
distributed over the interconnection topology, but that admit a “distributing factor” that makes it
distributed. We formalize this idea as follows.

Corollary 5.2. Let χ : V ⊂ R
n → R be continuously differentiable such that χ◦iR|Im(χ) = IdR|Im(χ),

i−1
R

(V) = Im(χ) and Im(χe| diag(Rn)∩∂V )∩Im(χ) = ∅. Let G be a connected undirected graph. Assume
there exist f : V ⊂ R

n → R such that f · gradχ is distributed over G, with all partial derivatives
{ ∂χ

∂p1
, . . . , ∂χ

∂pn
} having the same constant sign on V. Assume that the coordination algorithm u : V ⊂

R
n → R

n,

ui =
1∣∣f ∂χ
∂pi

∣∣
∑

j∈NG(i)

(pj − pi), i ∈ {1, . . . , n} (10)

is essentially locally bounded and such that V is strongly invariant. Then, u is distributed over G
and asymptotically achieves χ-consensus.
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Remark 5.3. Note that Proposition 5.1 and Corollary 5.2 generalize the main result in [10, Theo-
rem 2] by broadening the set of functions for which the consensus problem can be solved. The result
in [10] presents a class of distributed coordination algorithms for functions that admit an expression
of the form

χ(p1, . . . , pn) = f
( n∑

i=1

g(pi)
)
, (11)

for some functions f, g : R → R with g′(x) 6= 0 for all x ∈ R. However, the set of functions to which
Corollary 5.2 can be applied strictly contains this class of functions. As an example, consider the
function χ∗ : R

3
+ → R defined by

χ(p1, p2, p3) =
1

2
(
√

p1p2 +
√

p2p3).

This function does not fall into the category (11). This can be see by contradiction. Assuming
χ∗(p1, p2, p3) = f

(
g(p1) + g(p2) + g(p3)

)
, for some appropriate f, g : R → R. Then, ∂χ∗

∂p2

/
∂χ∗

∂p1
=

g′(p2)
/
g′(p1), i.e., the quotient only depends on p1 and p2. However,

∂χ∗

∂p2

∂χ∗

∂p1

=
p3
√

p1 + p1
√

p3

p2
√

p3
,

which depends on p3, and therefore, χ∗ is not of the form (11). On the other hand, the function
χ∗ : R

3
+ → R verifies the hypotheses of Proposition 5.1, and is distributed over the connected

undirected graph G = ({1, 2, 3}, E), with E = {(1, 2), (2, 3}. •

5.1 Distributed coordination algorithms for weighted power mean consensus

In this section, we study distributed algorithms that asymptotically achieve weighted power mean
consensus. This class of algorithms was originally presented in [10]. Here, we introduce them as
a particular application of Corollary 5.2 the weighted power mean function. More importantly, we
characterize their exponential rate of convergence.

For w ∈ R
n
+ with

∑n
i=1 wi = 1 and r ∈ R \ {0}, the weighted power mean χw,r : R

n
+ → R is

defined by

χw,r(p1, . . . , pn) =
( n∑

i=1

wip
r
i

) 1
r .

For r ∈ {0,±∞}, the function χw,r is defined by

χw,r(p1, . . . , pn) = lim
s→r

χw,s(p1, . . . , pn).

Alternatively, one has

χw,0(p1, . . . , pn) = pw1

1 . . . pwn
n ,

χw,+∞(p1, . . . , pn) = max{p1, . . . , pn},
χw,−∞(p1, . . . , pn) = min{p1, . . . , pn}.

Note that for specific values of the parameter r ∈ R
n ∪ {±∞}, the domain of definition of χw,r

can be larger than R
n
+. For instance, the function χw,1 is well-defined on R

n. The choice wi = 1
n
,

i ∈ {1, . . . , n}, yields the usual power mean function, that we simply denote by χr. Table 1
summarizes some distinguished members of this class of functions. The next result presents a class
of coordination algorithms that asymptotically achieve χw,r-consensus, with r ∈ R, exponentially
fast.
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χ−∞ Minimum

χ−1 Harmonic Mean

χ0 Geometric Mean

χ1 Arithmetic Mean or Average

χ2 Root-Mean-Square

χ∞ Maximum

Table 1: Some examples of power means.

Proposition 5.4. Let r ∈ R and w ∈ R
n
+ with

∑n
i=1 wi = 1. For any connected undirected graph

G = ({1, . . . , n}, E), the coordination algorithm uw,r : R
n
+ → R

n whose ith component is given by

(uw,r)i(p1, . . . , pn) =
1

wi
p1−r

i

∑

j∈NG(i)

(pj − pi), (12)

is distributed over G and asymptotically achieves weighted power mean-consensus with exponential
rate of convergence greater than or equal to c λ2

2(L)/λn(L), with

c =





max{p1(0), . . . , pn(0)}1−r, r > 1,

1, r = 1,

min{p1(0), . . . , pn(0)}1−r, r < 1.

Proof. Our proof strategy to assess the correctness of uw,r is to verify that the conditions in Corol-
lary 5.2 hold. Clearly, χw,r is continuously differentiable in V = R

n
+, χw,r ◦ iR = IdR on R+, and

Im(χw,r) = R+ = iR
−1(Rn

+). Since diag(Rn) ∩ ∂R
n
+ = {0}, we also have Im((χw,r)e| diag(Rn)∩∂V ) ∩

Im(χw,r) = ∅. The partial derivative of χw,r with respect to pi, i ∈ {1, . . . , n}, is

∂χw,r

∂pi
= wi

( pi

χw,r(p1, . . . , pn)

)r−1
.

Clearly, on R
n
+, all partial derivatives are strictly positive. Selecting f(p1, . . . , pn) = χw,r(p1, . . . , pn)r−1

in Corollary 5.2, we see that f · gradχw,r is distributed over G. The coordination algorithm defined
by (10) corresponds precisely to uw,r. Moreover, from the fact that χw,r is constant along the
trajectories, we deduce that R

n
+ is strongly invariant. The application of Corollary 5.2 yields the

convergence result.
We conclude the proof by assessing the rate of convergence of the trajectories of the system.

Let [0, +∞) ∋ t 7→ P (t) = (p1(t), . . . , pn(t)) ∈ R
n
+ be a trajectory starting from P (0) = P0 ∈ R

n
+.

To this trajectory, we associate a curve [0, +∞) ∋ t 7→ δ(t) ∈ R
n defined by

(p1(t), . . . , pn(t)) = χ1(p1(t), . . . , pn(t))1 + δ(t).

Note that 1T · δ(t) = 0. Let us study the evolution of δ(t). For each i ∈ {1, . . . , n},

δ̇i(t) = ṗi(t) −
d

dt

(
χ1(P (t))

)

=
1

wi
p1−r

i (t)
∑

j∈NG(i)

(δj(t) − δi(t)) −
d

dt

(
χ1(P (t))

)
.

Consider now the function t → V (t) = 1
2δ(t)T Lδ(t). Since G is connected, the eigenspace of L

corresponding to the eigenvalue 0 is ker(L) = span{1}. From (1) and using the fact that δ(t) is
orthogonal to 1, we deduce that λ2(L)‖δ(t)‖2

2 ≤ V (t) ≤ λn(L)‖δ(t)‖2
2. The evolution of this function

is governed by

V̇ (t) = (Lδ(t))T · δ̇(t)

= −
n∑

i=1

1

wi
p1−r

i (t)
( ∑

j∈NG(i)

(δi(t) − δj(t))
)2

.
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Now, taking into account that, for i ∈ {1, . . . , n}, one has wi ≤ 1 and pi(t)
1−r ≥ c for all r ∈ R, we

deduce

V̇ (t) ≤ −c
n∑

i=1

( ∑

j∈NG(i)

(δi(t) − δj(t))
)2

= −c ‖L δ(t)‖2
2

≤ −c λ2
2(L) ‖δ(t)‖2

2 ≤ −2c
λ2

2(L)

λn(L)
V (t).

Therefore, we conclude

‖δ(t)‖2
2 ≤ 2

λ2(L)
V (t) ≤ 2

λ2(L)
V (0) exp

(
− 2c

λ2
2(L)

λn(L)
t
)
,

which implies the result.

5.2 Distributed coordination algorithms for max and min consensus

In this section, we describe two distributed coordination algorithms for max and min consensus.
Since neither the maximum nor the minimum are differentiable functions, we cannot rely on Propo-
sition 5.1 or Corollary 5.2. Instead, we will build on the characterization obtained in Section 4.

Consider the dynamical systems

ṗi = sgn+

( ∑

j∈NG(i)

(pj − pi)
)
, (13a)

ṗi = sgn−

( ∑

j∈NG(i)

(pj − pi)
)
. (13b)

For ease of notation, we will refer to these flows by Xsgn+
and Xsgn

−

, respectively. Note that both
right-hand sides are discontinuous. We understand their solution in the Filippov sense [28]. The
following result characterizes the asymptotic convergence properties of these systems.

Proposition 5.5. Let G = ({1, . . . , n}, E) be a connected undirected graph. Then, the coordination
algorithm (13a) (respectively, the coordination algorithm (13b)) is distributed over G and asymp-
totically achieves max consensus (respectively, min consensus) in finite time.

Proof. Our proof strategy is to verify that the conditions in Corollary 4.4 hold. We prove it for
the max function and the flow (13a), and leave to the reader the analogous proof for the min
function and the flow (13b). Clearly, max : R

n → R, max(P ) = maxi∈{1,...,n}{pi}, is continuous and
surjective. Moreover, max(p, . . . , p) = p, so condition (iii) in Corollary 4.4 is satisfied.

Let us show that max is preserved by the flow (13a) using Theorem 2.1. We start by noting
that the set-valued map associated to (13a) is

K[Xsgn+
](P ) = {v ∈ R

n | vi ∈ [0, 1] if
∑

j∈NG(i)

(pj − pi) = 0,

vi = sgn+

( ∑

j∈NG(i)

(pj − pi)
)

otherwise}.

Let a ∈ L̃Xsgn+
max (P ). By definition, there exists v ∈ K[Xsgn+

](P ) with a = v · ζ, for all

ζ ∈ ∂ max(P ). If P ∈ diag(Rn), then ∂ max(P ) = R
n, and, necessarily v = (0, . . . , 0). Therefore,

a = 0. If P 6∈ diag(Rn), then using the fact that G is connected, there exists k ∈ {1, . . . , n} with
pk = maxi∈{1,...,n}{pi} such that

∑

i∈NG,k

(pi − pk) < 0.



www.manaraa.com

Therefore, vk = 0. We deduce then a = v · ek = 0. Note that 0 always belongs to L̃Xsgn+
max (P ).

Finally, we conclude L̃Xsgn+
max (P ) = {0}, and therefore, by Theorem 2.1, max is constant along

the trajectories of (13a), i.e., condition (ii) in Corollary 4.4 is satisfied.
Let us see that the trajectories of (13a) converge to diag(Rn). To do this, we rely on the

nonsmooth LaSalle Invariance Principle. Consider as candidate Lyapunov function V = −min.
Reasoning in a similar way as before, one can show that the set-valued Lie derivative is

L̃Xsgn+
(−min)(P ) =

{
{0}, P ∈ diag(Rn),

{−1}, P 6∈ diag(Rn).

Invoking Theorem 2.1, we deduce that minP (0) ≤ pi(t) for all i ∈ {1, . . . , n}. Since the max
function is conserved along the trajectories, we deduce

min P (0) ≤ pi(t) ≤ max P (0) , i ∈ {1, . . . , n},
and therefore, the trajectories of (13a) are bounded. Note that ZXsgn+

,−min = diag(Rn). The
application of Theorem 2.2 yields, in particular, that all trajectories of the system converge to
diag(Rn), which establishes condition (i) in Corollary 4.4. The application of Proposition 2.3 with
ǫ = 1 implies that convergence is attained in finite time (actually, in exactly max(P0) − min(P0)
units). Consider the Laplacian potential function V = ΦG associated with the graph G. The
set-valued Lie derivative of this function is actually single-valued

L̃Xsgn+
ΦG(P ) =

{ n∑

i=1

∣∣ ∑

j∈NG(i)

(pi − pj)
∣∣
−

}
.

Note also that ZXsgn+
,ΦG

= diag(Rn). The inclusion diag(Rn) ⊂ ZXsgn+
,ΦG

is clear. Now, take

P ∈ ZXsgn+
,ΦG

. By definition, this means 0 ∈ L̃Xsgn+
ΦG(P ), i.e.,

∑

j∈NG(i)

(pi − pj) ≥ 0 , i ∈ {1, . . . , n}.

Take k ∈ {1, . . . , n} such that pk = min(P ). Then
∑

j∈NG(i)(pk − pj) ≥ 0 if and only if pj = pk for

all j ∈ NG(i). Applying the same argument recursively, and using the fact that G is connected, we
conclude P ∈ diag(Rn), as claimed. The application of Theorem 2.2 yields, in particular, that all
trajectories of the system converge to diag(Rn), which establishes condition (i) in Corollary 4.4.

6 Conclusions

We have presented necessary and sufficient conditions for any coordination algorithm that asymp-
totically achieves consensus upon the value of an arbitrary function. Building on this characteri-
zation, we have (i) explored the setting of real analytic consensus functions; (ii) identified partic-
ular conditions on the consensus function under which distributed coordination algorithms can be
automatically designed, (iii) characterized the exponential convergence properties of a class of dis-
tributed coordination algorithms that achieve weighted power mean consensus, and (iv) introduced
distributed coordination algorithms that achieve max and min consensus in finite time.

Future work will proceed along three lines of research: (i) the investigation of similar results
in the setting of networks with dynamically changing interconnection topologies; (ii) the further
development of systematic methodologies to design distributed coordination algorithms for general
consensus functions; and (iii) the application of the results to the synthesis of cooperative strategies
for distributed estimation, data processing and fusion problems.
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